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Abstract: Wherever people gain their livelihood in mountains and steeplands, the productive
capacity of the soils they use is likely to be affected by mass movement erosion. The impacts of
mass movement erosion on land productivity are significant but under-rated in the scientific
literature. Impacts on cropping are here reported from 15 countries in south and southeast Asia,
east Africa, the Caribbean and Melanesia, but accounts are generalized or anecdotal, and do not
quantify crop loss or damage attributable to mass movement separately from that due to surface
or fluvial erosion. Impacts on pastoral grazing have been studied in New Zealand, where
production losses of up to 80% at field scale, and up to 20% at farm scale, have been measured.
Studies in the Pacific Northwest coastal forests of North America show plantation forest wood
volume declines by 35-50% on eroded sites. Mass movement impacts on production from
tropical forests or agroforestry appear to be as yet undocumented.

The reasons for lack of documentation are, first, that most soil erosion—productivity research
has been done on gently sloping cropland, which is subject to surface rather than mass
movement erosion. Secondly, geomorphological research in steeplands has dealt with mass
movement as a hazard to human life, settlements and infrastructure — with limited identification
of its contribution to sediment loads in rivers, and disregarding its impact on land productivity.

We suggest there are many other countries where significant impacts are likely to occur, and
that erosion—productivity studies should pay more attention to this type of erosion. Studies
should not be restricted to cropland, but also extend to grazing land, plantation forestry, agro-
forestry and traditional uses of natural forest as mass movement appears to affect all these forms
of land-based production, particularly in densely populated steeplands whether tropical or
temperate. Topics needing study are the documentation and costing of productivity losses, ways
to reduce mass movement impacts on productivity, and ways to enhance recovery of soil on
eroded areas (e.g., revegetation with fertility-building shrubs and legumes).

Key words: erosion, land productivity, landslides, mass movement, off-site impact, on-site
impact, primary production, production loss, soil degradation.
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22 Impacts of mass movement erosion on land productivity: a review

I Introduction

Erosion is one of the most pervasive forms of soil degradation and is the subject of
increasing concern because of its implications for food production for a rapidly
increasing world population. The impacts of erosion on land productivity are particu-
larly significant because losses are generally cumulative and, on a human timescale,
permanent. On the other hand, any cause-and-effect relationships between soil erosion
and reductions in productivity are complex and often indirect. Accordingly,
erosion—-productivity relationships have been the subject of considerable research.
Searches of the Commonwealth Agricultural Bureau’s (CAB) Geobase abstracts
database, undertaken between 1993 and April 1998, revealed nearly 5400 items which
combined the key words production (or productivity) and erosion. In the last 15 years, a
number of global or regional reviews of the subject have been carried out, including
those of Crosson (1984), FAO (1984), Follett and Stewart (1985), Larson et al. (1983;
1985), Lal (1986; 1987), Lal and Stewart (1990), Roberts (1992) and Dregne (1990; 1992;
1995). However, this literature reveals marked geographical unevenness in coverage.
Stocking (1985) has estimated that 60% of the literature comes from the USA, which has
only about 5% of the world’s potentially cultivable land. On the other hand, a number
of authors have commented that the subject is considerably under-researched in
tropical environments (Dregne, 1990; Lo, 1990; Bojo, 1991), although this situation is
improving (Lal, 1990; FAO, 1991; Stocking and Saunders, 1992).

There are further inconsistencies in the topics researched. In line with the geograph-
ical dominance of USA-based research, most of the literature deals with impacts on crop
production on gently sloping, mechanically cultivable land, principally subject to
surface forms of erosion. Other land types have received much less attention, notably large
areas of steeplands used for crop production in several climatic zones, whether through
terracing or through manual cultivation of natural slopes. Other productive land uses,
such as grazing or forestry, also tend to be overlooked. Steeplands are commonly
subject to mass movement erosion types, such as landslides, debris flows and slumps.
Sidle et al. (1985: 1) noted that ‘mass movements can decrease primary land productiv-
ity and thus may be one of many factors preventing sustained land use’. They also
noted in their conclusion (p. 119):

We think we have identified major gaps in knowledge concerning soil mass movement ... which deserve
concentrated attention in future research ... At the broad regional and national levels, too little is known
of the effects of mass movement erosion on the productivity of pastoral, agricultural and forest land. These
persistent on-site costs of mass movement erosion have received much less emphasis than have off-site
impacts and costs . ..

Of the 5400 literature items concerning erosion and productivity in our CAB searches,
175 also contain the key words mass movement, or landslide. Of those items, only about
25 contain information substantially drawn on in the present review. This confirms that
a gap in the literature, previously detected by the reviews of Sidle et al. (1985), Trustrum
and Hawley (1986) and Blaschke and Trustrum (1996), still persists.

In this article we review the literature available to us (predominantly English
language) about worldwide impacts of mass movement on land productivity. We wish
to show that these impacts are both significant and under-rated in a range of environ-
ments, tropical and temperate, and warrant further research.
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Il Terminology

In this review, the treatment of mass movement as a type of erosion largely follows that
of Crozier (1986). Mass movement is defined by Crozier (1986: 6) as ‘the outward or
downward gravitational movement of earth material without the aid of running water
as a transportational agent’. Mass wasting, slope movement and slope failure are
commonly used synonyms. In Crozier’s treatment, mass movement includes the
processes of subsidence and creep which lack discrete failure boundaries, but as
landforming processes these two are insignificant in comparison with discrete slope
movements, for which Crozier (1986) and Brabb and Harrod (1989) use the general term
landslide. In some classifications of discrete slope movements (e.g., Varnes, 1978), a
subdivision is made between slides and flows. Slides are in turn subdivided into
rotational and translational, and flows into rapid or slow failures. For the purpose of
this review, we prefer to retain mass movement as a term which designates the process,
defined by Crozier without further subdivision. We regard mass movement as a type of
land degradation, here defined (after Dudal, 1982) as a loss of land productivity through
various processes such as erosion, salinization, waterlogging, depletion of nutrients,
deterioration of soil structure or pollution.

Mass movement processes essentially feature catastrophic removal or displacement by
gravity of the whole soil body from a slope. This is in contrast to fluvial and aeolian
erosion processes which feature progressive removal of soil particles by water or wind,
from either sloping or level surfaces. Mass movement grades into both fluvial and
coastal erosion types (Crozier, 1986). In the case of coastal erosion, the areas of overlap
are geographically very limited, but could potentially have impacts on land productiv-
ity (although none have been noted in our literature review). In the case of fluvial
erosion, areas where mass movement spatially coincides with gullies are widespread
and erosion—productivity impacts are the subject of significant literature coverage but
usually without acknowledgement of the mass movement component of erosion.
Fluvial and mass movement erosion can also be closely linked in a temporal sense, for
example when surface erosion occurs from unconsolidated sediments resulting from
mass movement erosion.

Land productivity is defined (following Dudal, 1982) as the amount of primary
production per unit of land area. It should be noted that our definition departs from the
conventional economic definition of productivity (the price received per unit of output
relative to the cost of inputs used to produce it). The principal reason for this departure
is that our literature review reveals remarkably little available data about impacts of
erosion on economic productivity of land. Most published data are expressed as crop
yields, livestock numbers carried or similar.

I Why have mass movement impacts on land productivity been neglected?

Most of the early erosion—productivity research was carried out in temperate croplands,
especially cereal croplands in North America (Bennett, 1939; Baver, 1952). In these
regions, cropland is generally gently sloping, i.e., typically <5 degrees but not steeper
than 15 degrees. Mass movement is so infrequent in these environments that it is not
commonly recognized as an erosion problem. While gully and streambank erosion are
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significant, sheet and rill erosion are thought to account for almost 80% of total
sediment yield (Nowak et al., 1985).

In the 1980s several reviews (e.g., Hudson, 1982; Lal, 1985) pointed out that the envi-
ronments where this research had been carried out were not typical of much of the
world’s croplands, in particular steep land in the tropics used for a large variety of
crops. In recent years, many runoff plots and crop trials have been established to
measure surface-erosion-induced loss of land productivity in tropical countries
(Stocking and Saunders, 1992). However, these plots and trials still do not represent the
range of slopes cultivated in the tropics. Those described by Stocking and Saunders are
situated on 3-28% slopes (with only one exception at 55%). Another compilation of
runoff-plot-derived erosion rates in tropical regions (El-Swaify, 1990) refers to slopes
ranging up to 30%. At all these sites surface erosion processes apparently predominate,
particularly sheetwash and rilling of topsoil. Some gully erosion also occurs but
researchers have found it difficult to measure (Foster, 1988). There is little or no
reference to mass movement in the above citations.

The runoff plots and crop trials, whether temperate or tropical, undoubtedly measure
one form of erosion-induced decline in land productivity: that due to surface erosion.
Equally undoubtedly, surface erosion on these types of sites is geographically
widespread and occasionally severe. On the other hand, reports of crop cultivation on
slopes of 30 degrees or more are common in geographical and agricultural literature —
particularly in the tropics and under shifting cultivation (Blaikie and Brookfield, 1987).
While the threshold slope steepness for mass movement varies considerably, the geo-
morphological literature indicates that it is relatively common on slopes greater than
about 30 degrees (Crozier, 1986).

Mass movement has been explicitly excluded from some definitions of soil erosion
and implicitly excluded from commonly accepted concepts of soil degradation which
emphasize loss of soil quality rather than loss of soil (e.g., Klock, 1982; Lal and Stewart,
1990). In much of the literature on erosion—productivity impacts, the type of erosion
process involved is unspecified or inadequately described. It is often simply
categorized as ‘water’ or ‘wind’ (fluvial or aeolian) erosion. Mass movement is
sometimes mentioned as a form of water erosion. Neither of these approaches is satis-
factory, as mass movement and fluvial processes are fundamentally different (Crozier,
1986). The difference in processes is very significant for erosion—-productivity
studies because it means that mass movement erosion cannot be modelled or
predicted by surface soil loss models such as the Universal Soil Loss Equation (USLE)
and its derivatives which have been the subject of a large proportion of all erosion—
productivity research. Nor can mass movement generally be investigated using
bounded runoff plots, the most common technique in erosion—productivity research
(Mutchler et al., 1988; Pla Sentis, 1997).

A reason for inadequate recognition of mass movement impacts may be that much
agriculture in steeplands is made possible by terracing. Terrace systems have often been
maintained continuously for hundreds of years and give the impression of stability and
sustained agricultural productivity, with little obvious signs of mass movement. Well
maintained terrace systems can indeed enhance stability against mass movement
erosion. However, the impression of stability can sometimes be superficial, with old
mass movement features evident on closer inspection (Figure 1). Because terraced land
is usually managed by small-holders, any mass movement damage has a very
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Figure 1 Mass movement collapse of rice paddy terraces, Ubud, Bali,
Indonesia.
Photo taken by N.A. Trustrum, April 1995

immediate impact on the farming family. The damaged area is repaired, reterraced and
restored to production as speedily as possible. Both the visual impact and the direct
production impact are thereby reduced. The principal short-term impact is indirect,
through diversion of labour to repair the damaged agricultural infrastructure.

A further factor in previous neglect of the topic is that although there is an extensive
literature on the impacts of mass movement erosion (e.g., Crozier, 1986; Bonnard 1988;
Brabb and Harrod, 1989; Hewitt, 1997), this has concentrated heavily on mass
movement as a hazard either to human life or to human settlements and their infra-
structure (roads, bridges, dams, irrigation schemes, etc.). This is understandable in view
of the tremendous destructive force of many mass movements. However, this emphasis
means that the loss of agricultural land, which is occasionally listed among the impacts
of a particular mass movement episode, is treated as a loss of infrastructure rather than a
loss of productive capacity. The emphasis on mass movement as a hazard has also led to
an emphasis on its off-site impacts, as opposed to land productivity impacts, which are
largely on-site (see below). Exceptions to this treatment are the extensive studies
(summarized and referenced in section VI) of the effects of landslides on pastoral
production in New Zealand.

Mass movement erosion is often thought of as a natural process, and as such appears
to have been judged outside the sphere of erosion—productivity researchers who
assumed that all erosion occurring on agricultural land was anthropogenic (e.g., Lal
and Stewart, 1990). However, almost all forms of erosion, whether fluvial, aeolian or
mass movement, occur naturally as well as resulting from human activity (Young and
Saunders, 1986). It follows that productivity impacts can be caused by natural or
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induced erosion. Furthermore, although mass movement is a common natural process,
its rate is often influenced significantly by human activity, particularly by changes to
the amount or quality of woody vegetation cover (Sidle etal., 1985; Young and
Saunders, 1986; Trustrum and Page, 1992).

The above points also reveal a final reason: the subject of mass movement as a cause
of lost land productivity has fallen through a gap between two largely nonintersecting
areas of research: erosion—productivity research carried out by agricultural scientists or
soil scientists, and mass movement hazards research carried out by geomorphologists,
hydrologists or engineers.

IV  On-site and off-site effects of mass movement

Lal (1987) discusses the following erosion-induced causes of on-site decline in land pro-
ductivity: decreases in plant rooting depth, alterations in plant-available water reserves,
degradation of soil structure, loss of organic matter, and loss of plant nutrients and soil
fertility. Lal appears to refer only to fluvial or aeolian erosion, but these factors all apply
to mass movement at least equally. Loss of productivity due to mass movement is
commonly more extreme at the affected site than that due to surface erosion, because
the former often removes the entire soil profile in one event, whereas the latter normally
takes many years to remove an equivalent depth. Even if mass movement removes only
part of the soil profile, that part almost always includes the organic matter and nutrient-
rich A and upper B horizons. The only exceptions to this are in highly weathered
regolith with few nutrients remaining in the topsoil, where weathering can relatively
rapidly produce a more fertile soil after erosion.

Off-site declines in land productivity occur through excessive sedimentation or
inundation of agricultural land downstream from eroded areas (Trustrum et al., 1999).
These can occur downstream of mass movements, just as they can downstream of
fluvially eroded land, in both cases contributing sediment to river networks. Indirect
off-site impacts also occur through damage by sediment to production infrastructure
such as transport routes and irrigation systems. Sediment derived from mass
movement is just as likely to cause such off-site effects as an equal amount of sediment
derived from surface erosion.

This leads to an important question: does mass movement (or surface erosion for that
matter) in fact have a serious net impact on land productivity if debris is deposited
within the same land management unit (whether this be hillslope, farm, district or
watershed)? The answer is time-dependent according to what changes occur in soils
formed from both the eroded and the deposited material; and also on the sediment
delivery ratio, i.e., amount of sediment loss out of the land unit under examination. As
already mentioned, the remaining eroded subsoil is not always stony or infertile; rapid
weathering may release nutrients and form a good medium for plant growth. Organic
material and nutrients eroded by mass movement are not necessarily lost from a slope.
Some mass movement forms (e.g., earthflows) carry soil blocks only a short way
downslope, and may even leave them more or less intact. Others (e.g., shallow
landslides) break up soil as they transport it, but generally deposit the debris as
colluvium on footslopes. Even where soil is removed from slopes entirely, for instance
by gullying of mass movement debris, much may be redeposited on stream terraces
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within the same field or farms (Page et al., 1994). Such processes may even be deliber-
ately induced by cultivators causing the collapse of small banks, etc., as observed by
one of the authors (NAT) in Indonesia.

On the other hand, plant growth conditions at depositional sites (Whether colluvial
or alluvial) are often unfavourable for many years afterwards. Organic- and nutrient-
rich topsoil is buried; soil structure and drainage may deteriorate. Clearly mass
movement can either reduce or increase land productivity on different parts of a land
management unit, but always alters the pattern of land productivity within the unit
(Trustrum and Stephens, 1981) or within a region (Wright and Mella, 1963).

V  Environments in which mass movement has significant productivity impacts

Several monographs (e.g., Sidle et al., 1985; Crozier, 1986) have reviewed the influence
of natural factors, such as rock type, tectonic environment, climate and slope, on the
incidence of mass movement; this topic will not be covered in this review. Cultural
factors which influence mass movement’s incidence, specifically the effects of
agriculture and timber production, are also touched on by these authors. However most
reviews of cultural factors influencing erosion discuss their impact on surface erosion
(e.g., Blaikie and Brookfield, 1987; Lal, 1990, Dregne, 1990; 1992. A handful of contribu-
tions make reference to the combination of natural and cultural factors influencing mass
movement in specific countries, notably Caine and Mool (1982), Kienholz et al. (1983),
Chang (1984), Carson (1985; 1989), Diemont et al. (1991) and Dregne (1995). However
there are as yet no reviews specifically discussing the global environments where
natural factors predisposing slopes to mass movement coincide with cultural pressures.
This section of our article constitutes a tentative attempt to do so.

It is an obvious point that in considering the impacts of mass movement on land pro-
ductivity, the environment subject to mass movement impacts must be one that is used
for land-based production. It need not be used continuously or intensively; it could be
a montane area used for summer pasturage but here the impact is likely to be small. For
example, although the Southern Alps of New Zealand have very high rates of mass
movement erosion, and this erosion has significant off-site impacts in terms of sediment
yield and associated damage (Griffiths, 1981), on-site land productivity impacts are
insignificant because a large proportion is unoccupied or grazed at low intensities
(Whitehouse, 1985). In other regions, particularly where there are growing or displaced
human populations, high mountains may be subject to intense uses that are severely
affected by mass movement (Messerli and Ives, 1997). Examples are the Himalaya
foothills of Nepal (Kienholz etal., 1983), the New Guinea Highlands (Blaikie and
Brookfield, 1987) and the High Andes (Kojan and Hutchinson, 1978).

Our indicative map (Figure 2) is based on the FAO/Unesco 1:25 000 000 World soil
resources map (FAO, 1990), interpreted with reference to our literature search. We
identified soil groups susceptible to mass movement as those which tend to be
relatively shallow, with clayey subsurface horizons, occurring on steep slopes in
continually moist or seasonally wet climates (Table 1). The FAO/Unesco 1:5 000 000 Soil
map of the world (FAO-Unesco, 1978) distinguishes three slope classes. Class C (steeply
dissected to mountainous: dominant slopes over 30 degrees) provides some guidance
as regards regions where a high proportion of soils within each group are susceptible to
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mass movement. Finally, from these areas of steepland with susceptible soils were
excluded some areas of high mountains, deserts and subpolar regions not used
intensively for production. Total areas (all soil groups) of land area steeper than 30% in

Table1 Major soil groupings on which mass movement frequently occurs

FAO/Unesco primary
map unit

Principal soil
taxonomy
equivalents

Brief description of
soils

Significant mass
movement — land
productivity impacts

Lithosols (Leptosols in
1988 revision)

Cambisols

Andosols

Acrisols

Luvisols

Nitisols

Podzols

Ferralsols

Lixisols

Entisols (mainly
Orthents), Lithic
subgroups of other
great groups

Inceptisols
(except Aquepts)

Andisols

Ultisols
Alfisols (Kandi or
Kandhapl subgroups)

Alfisols

Ultisols
Alfisols

Spodozols

Oxisols

Alfisols
(Kandi or Kandhapl
subgroups)

Rocky shallow soils.
Includes desert as well
as mountainous
regions

Weakly weathered
brownish and reddish
soils. Temperate and
boreal climates

Amorphous soils
developed on volcanic
ash

Acid soils with argillic
subsoils and low base
saturation. Humid
tropical climates

Nonacid soils with
argillic subsoils, high
exchange capacity and
base saturation. Humid
temperate climates

Strongly weathered basic
soils developed in
volcanic ash. Humid
montane tropics

Leached horizon, subsoil
accumulation of Al, Fe
and organic matter

Highly weathered
tropical soils with
subsoil dominated by Al
and Fe sesquioxides

Argillic soils with

low exchange capacity
and high base
saturation. Subhumid
tropics

Major

Some

Some

Some

Minor

Minor

Minor

Minor

Minor

Source: Summarized from FAO (1990) and Richter and Babbar (1991).
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tropical regions range from 8% (Africa) to 29% (southeast Asia), with an average of 16%
(Lal, 1990). We believe that temperate regions would fall within this range.

Susceptible soils are widespread in the following regions: the continental rim of the
Pacific lithosphere plates (including island arcs of the western and southwestern
Pacific, but excluding polar and arid portions of the rim); Caribbean island arcs and
Central American mountain chains fringing the Caribbean; the Atlantic coastal uplands
of southern Brazil; the Ethiopian mountains; highland areas around the African Rift
Valleys; the Drakensberg and Madagascar; mountains fringing the Mediterranean Basin
(excluding arid parts of the Atlas mountains, Asia Minor and Caucasus); European
mountains (Pyrenees, Alps, Norway); the Carpathian and Ural Mountains; steepland
areas stretching through central and southern China to Tibet; the Afghan mountains,
Hindu Kush and Himalayas; steeplands in Burma, northern Thailand and Indochina;
much of the Philippine and Indonesian archipelagos; and central New Guinea.

It is meaningless to attempt to measure the extent of susceptible soils in these regions
as, at the scale mapped, mapping units all include a mix of affected and unaffected soils.
Some indication is given by statistics for individual countries. For example, 43% of Java
has soils from the groups in Table 1 on slopes steeper than 30 degrees (Diemont et al.,
1991), almost all cropped and densely settled. Of the 36% of New Zealand susceptible
to mass movement erosion (Eyles, 1983), nearly half (44%) is farmed hill country or
mountain land, albeit grazed and sparsely inhabited.

Even on susceptible soils, only a relatively small proportion of land is likely to be
affected by active mass movement erosion at any one time. However, considering
Figure 2, it is reasonable to estimate that up to 20% of the world’s land area is sporadi-
cally affected by mass movement under its present vegetation cover (including natural
forest) and that as much as half of this (again including forest) is used for land-based
production and is thus susceptible to mass movement impacts on land productivity.

Production activities on steeplands include irrigated and rain-fed cropping,
pastoralism, timber cutting and other forest uses. In many countries/regions there is
little cultivation undertaken on steep land and productive land uses are generally
restricted to pastoralism or timber production. However in densely populated
countries not only does deforestation and extensive cultivation occur on steeplands but
also fully or partly forested steeplands may be intensely used, for shifting agriculture,
agroforestry or extraction of various products. All these activities are susceptible to
impacts from mass movement; and those which reduce forest cover increase mass
movement. Deforestation rates are generally rapid.

VI Overview of mass movement impacts on land productivity

In this section, we review the available literature about mass movement impacts on
land productivity worldwide. As discussed above, our primary information source was
175 items drawn from CAB abstracts databases, containing key words production or pro -
ductivity and mass movement or landslide. The majority of these references are
fragmentary, spurious or generalized. Our own research database contains 60 entries,
from 38 countries. Table 2 is a summary of information from 22 of the more complete
and useful references, along with seven additional publications on the topic from New
Zealand. These are discussed below under headings corresponding with three broad
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categories of land use. The unevenness of information in Table 2 will be clear. The ‘Area
affected” and ‘Duration of events” columns were particularly difficult to compile con-
sistently as the literature was frequently unclear as to whether single or multiple events
were being described, or whether areas affected were areas of mass movement damage
or area of affected district.

1 Cropping

Researchers in a number of countries have detected widespread occurrence of mass
movement in cropped agricultural steeplands, notably Starkel (1972), Carson (1989),
Kucera (1990), Diemont ef al. (1991) and Rijsdijk and Bruijnzeel (1991) in Indonesia,
Humphreys and Brookfield (1991) in New Guinea, Caine and Mool (1982), Kienholz et
al. (1983) and Carson (1985) in Nepal, Simon and Guzman-Rios (1990) in Puerto Rico
and Rapp et al. (1991) in Tanzania. They have generally done so in the course of
sediment yield or sediment budget investigations, pointing out that a major source of
‘missing’ sediment, in budgets at catchment scale, has been mass movement erosion
occurring either in catchment headwaters or downstream. Sources of mass movement-
derived sediment in downstream agricultural districts include, as well as natural
landslides on steep slopes, failures induced by runoff from roads or leakage from
ditches, failure of artificial embankments on terraced slopes, and collapses where
hillsides have been deliberately undercut to increase cultivable area of slopefoot
terraces (Diemont et al., 1991). In the central highland valleys of Papua New Guinea,
Humphreys and Brookfield (1991) state that forms of slope failure, such as shallow
slumps, deep-seated landslides and debris flows, are by far the most common erosion
forms in cultivated steeplands. Many mass movement scars may be more significant for
their contribution to sediment loads than for production losses but, in densely
populated agricultural areas such as Java, the combined area of such features is con-
siderable (Diemont et al., 1991) and therefore constitutes a loss of productive area.

The references cited are mainly from tropical countries where population density
forces cultivation of steeplands either during shifting cultivation cycles or through
terracing or contouring. We have found no references from North America, possibly
because here little land subject to mass movement is cropped (Nowak et al., 1985).

Documentation of impacts is poor. Some references simply note that cropland has
been destroyed, as part of an account of impacts of mass movement from a geomor-
phology or hazard assessment perspective. Others (e.g., Temple and Rapp, 1972;
Kienholz et al.,, 1983; Carson, 1985; Rapp et al., 1991) contain photographs or maps
which show mass movement features clearly impinging on cropland. A recent article
from Nepal discusses the impact of landslides on irrigation systems (Sharma and
Nicholaichuk, 1996). Reported scales vary from very local events (e.g., Chang, 1984;
Ovuka and Ohman, 1995), through to huge ones that affect tens of thousands of
hectares (e.g., Wright and Mella, 1963) or tens of kilometres of waterway affected by
sedimentation or flooding (Liu et al., 1990). Almost all accounts are of erosion from one
storm, not the cumulative erosion resulting from successive events.

There are virtually no data on amounts of production loss or economic loss from
mass movement in cropland. The reasons for this omission are methodological. First,
surveys of farmers’ crop losses do not indicate which losses are due to surface erosion,
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mass movement, sedimentation, inundation, etc. Secondly, attempts to differentiate the
forms of erosion are problematic. For instance, some productivity losses are specifical-
ly ascribed to gully erosion (e.g., by Dregne 1990; 1992). However as gully and
streambank erosion are frequently initiated by mass movement (Dhruvanarayana and
Sastry, 1985; Llerena, 1987; Lal, 1990; Bocco and Garcia-Oliva, 1992), some of the pro-
ductivity losses ascribed to gully erosion could be equally validly ascribed to mass
movement. Terms such as ‘debris flow gullies’ (Li and Cheng, 1987) have sometimes
been used to describe these complex fluvial-mass movement features.

Probably the best documented region is Java, Indonesia, where, as stated above, the
proportion of land susceptible to mass movement erosion is very high, and increasing
because of deforestation and artificial recontouring. The references cited above clearly
show the significant contribution of mass movement to erosion rates and sediment
loads. Because of the large areas of land affected and the density of the population, it is
reasonable to assume that the production impacts are significant. However accounts of
specific productivity impacts are at best anecdotal (Table 2) and certainly not specified
in discussion of economic impacts of erosion (Magrath and Arens, 1989). Thus it is still
debated whether mass movement is a factor in the low productivity of upland envi-
ronments in Java (DeGraff and Wiersum, 1992).

At least one reference indicates that mass movement erosion can occasionally lead to
increased rather than decreased productivity from cropland. In tropical steeplands,
soils on stable sites such as ridgetops are very deeply weathered, leached and generally
infertile, whereas soils on hillslopes where mass movement periodically exposes less
weathered subsoils rapidly accumulate organic matter and nutrients in new topsoils
which are relatively favourable for subsistence crops under a shifting cultivation
regime. This has been documented in the Solomon Islands by Wall et al. (1979). Lal
(1987) describes similar situations resulting from surface erosion where slight or
moderate levels of erosion may have a positive effect on crop yield on soils because
lower horizons have more favourable conditions for plant growth than surface
horizons.

2 Pastoral grazing

The work summarized in the following paragraphs, on the effect of landslide erosion
on pastoral use in the steeplands of the North Island, New Zealand, appears to
constitute the best documented example of mass movement effects on productivity
world-wide.

In New Zealand, some 7.6 million hectares of hill country and mountainland are used
for pastoral grazing of sheep and beef cattle. About 44% of the North Island and 30% of
the South Island are prone to mass movement, through a combination of weak, tecton-
ically disturbed rocks, steep slopes and frequent intense rainfalls. Rates of mass
movement have greatly increased by clearance of forest for pasture establishment since
1840 (Taylor, 1939; Williams, 1979; Trustrum and Hawley, 1986; Trustrum and Page,
1992; DeRose et al., 1993; Glade and Crozier, 1996; Page and Trustrum, 1997). Siltation
of river channels and sedimentation of flood plains have been attributed to headwaters
erosion, as has loss of pastoral production and cropland (e.g., by Cumberland, 1945;
Poole, 1983).
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The magnitude of pasture production loss has been established by a series of trials
in North Island hill country districts which have measured pasture growth on revege-
tating scars of different age, relative to uneroded ground (Lambert ef al., 1984; Trustrum
et al., 1984; Douglas et al., 1986; Miller, 1991; DeRose et al., 1995; see also Figure 3).
Annual dry matter production on recently eroded landslide scars is depressed by about
80% on average, relative to uneroded ground. Much of the residual growth is of low
nutritive value for fodder. Production recovers over some 20—40 years as scars regrass,
but to an asymptotic level below that of adjacent uneroded ground. Longer-term
declines of productivity have been measured on a whole hillslope basis at 2% per
decade or a total of 18% since forest removal (Trustrum et al., 1984). The permanent loss
can exceed 40% (on unfertilized soils re-forming from sandstone parent material), or be
less than 5% (on heavily fertilized soils re-forming from mudstone). Hillslope angle
influences productivity. On sandstone hillslopes permanent reductions increase from

Figure 3 Pasture measurement trials on shallow landslide scars of
different age and adjacent ‘uneroded’ forest soils, Wairarapa, New
Zealand. Deforestation occurred between 1860 and 1890

Photo taken by N.A Trustrum, February 1980

Ol LE Zyl_i.lbl
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about 1 to 3% per decade with increasing slope angle, from 28° to 42° (DeRose et al.,
1995). On deep-seated earthflows, somewhat greater pasture production is obtained
from remnant vegetation rafted by the predominantly subsurface movement.
Production from extensively disrupted earthflow surfaces is depressed by about 80%
relative to uneroded ground. Pasture that is disturbed (i.e., rumpled into hummocks
and hollows) is depressed by about 40%. Old flows which have stabilized still show
slight production loss as less than 10%. Pasture production recovered in proportion to
increases in nitrogen, phosphorus and carbon levels in soil on revegetating scars,
suggesting that loss of these nutrients partially limits plant growth (Trustrum et al.,
1990). The decrease in regolith depth caused by erosion (Trustrum and DeRose, 1988)
implies considerable change in soil physical properties, particularly water-holding
capacity, which may also limit plant growth (DeRose et al., 1995).

A further aspect of the New Zealand investigations has been the measurement of
pasture recovery in the presence of conservation measures. Lambert et al. (1993) have
measured complete recovery of pasture production on shallow landslide scars within
five years, where these are fertilized, oversown with grass and legume seed, and
livestock are excluded. Miller (1991) has also demonstrated complete pasture recovery
where earthflows are cultivated, drained and fertilized. A common stabilization
technique is widely spaced plantation of fast-growing trees, mainly Populus and Salix
species, which stabilize soil with a network of lateral roots and still enable land to be
grazed. Where earthflows are stabilized by spaced planting of trees, Miller et al. (1996)
report annual pasture production at around 60% of the uneroded level (i.e., stabiliza-
tion is achieved with no net loss in growth relative to disturbed ground (also 60%), and
with a net gain relative to disrupted ground (20%) ).

Opinions differ as to the economic impact of this long-term production loss. Trustrum
and Hawley (1986) postulated that, as eroding hillsides represent about 60% of total
area and contribute about 45% of overall production on typical hill country farms, 18%
reduction across eroding hillsides translates to about 9% loss in annual farm gross
income. This interpretation must be reconciled with the fact that New Zealand’s
pastoral hill country has now been deforested for some 70-120 years, yet the impact of
erosion on farm profits has clearly not been enough to force hill country farmers to
abandon their land. Most have been able to mask the effects of erosion by amalgamat-
ing with neighbouring farms, improving utilization of the remaining pasture growth on
regrassed scars, topdressing with fertilizer and lime, and resowing with higher-
producing pasture plants (Trustrum ef al., 1984; Trustrum and Blaschke, 1992; Clough
and Hicks, 1993).

Nevertheless, several surveys carried out in recent years indicate that mass
movement economic impact is significant at farm scale, regionally and, perhaps,
nationally (Clough and Hicks, 1993; Glade and Crozier, 1996). Hawley (1984) reported
that government disaster relief payments for landslide damage had steadily increased
over the previous decade. Mass movement erosion during Cyclone Bola in 1988 caused
damage and production loss averaging NZ$26,000 on hill country farms of the North
Island east coast (Korte, 1989). In one east coast catchment, Hicks (1992; 1995) estimated
that mass movement during Cyclone Bola had caused production losses averaging $72
a hectare and damage repair costs amounting to $59 a hectare. Clough and Hicks (1993)
cited figures from a number of mostly unpublished government sources, indicating that
government expenditure on repair of landslide and flood damage (including disaster
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relief payments to farmers) could be less than $1 million some years, but exceed $70
million in others.

Other than the New Zealand literature, we have found only one instance where mass
movement impacts on pastoral land productivity has been documented: the Uluguru
Mountains in Tanzania (Temple and Rapp, 1972; Rapp et al., 1991), where an intense
three-hour rainstorm in 1970 caused widespread slope failures over 75 km?. Landslides
and mudflows originated about equally in cultivated cropland, fallow land and lightly
grazed land. The documented economic impact in this case was confined to the
cropping land only.

Even in densely populated tropical regions, uncultivated steeplands are often lightly
grazed, and often covered with relatively unpalatable plant species. However, the New
Zealand evidence suggests that production impacts can be expected in other
steeplands, if they are erosion-prone (due to tectonic activity and/or high rainfall) and
especially if they have been recently deforested. Such areas include populated
steeplands under pastoral use in southern and eastern Africa, the Andes, Amazon Basin
and large Pacific islands such as New Guinea.

3 Forestry and agroforestry

In general, fewer impacts of mass movement on forest land productivity would be
expected because of lower rates of mass movement. In a number of temperate countries
where landscape-scale analysis of mass movement has been carried out, mass
movements recent enough to have discernible scars rarely cover more than 1-2% of
forested landscapes (Sidle et al., 1985; Crozier, 1986). Also, with much longer harvest
cycles for trees than most agricultural crops, cumulative erosion impacts could be
expected to take much longer to be discernible (Swanson et al., 1989). However, studies
of vegetation regeneration on landslide scars in areas of natural forest (e.g., Lundgren,
1978; Shimokawa, 1984; Mark et al., 1989; Guarigata, 1990; Blaschke et al., 1992) show
that it takes many decades to centuries for site conditions and indicators such as basal
area to return to similar levels as in nearby undisturbed forest. Similarly, a few studies
in production forests show significant impacts of mass movement on forest productiv-
ity. The most detailed come from the Pacific Northwest region of North America. Here,
widespread commercial forestry is undertaken in both old-growth and regenerated
forest stretching from c. 37° N to 61° N. Several studies have examined the impact of
erosion, specifically including mass movement erosion, on forest productivity. These
studies are reviewed by Swanson et al. (1989) and Chatwin and Smith (1992) and
discussed by a number of contributors to Perry et al. (1989).

The most significant are those of Miles etal. (1984) in Douglas fir (Pseudotsuga
menziesii) forests in the western Cascade Mountains in Oregon, and Smith et al. (1984;
1986) in mixed coniferous forests on the Queen Charlotte Islands, British Columbia.
Plots on landslides of different ages and adjacent noneroded areas in either old-growth
or regenerated forest were selected and surveyed either by paired comparisons (Miles
etal.) or general survey (Smith efal.). Stocking rates, species composition, height
growth, basal area and biomass were among the vegetation factors sampled, as well as
soil properties.

Together, their results show a significant reduction in all productivity-related
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properties sampled on landslide areas compared with either comparably aged regener-
ating and old-growth areas. The declines are accompanied by significant changes in
species composition in the study of Smith et al., chiefly a large increase in the relative
importance of red alder (Alnus rubra) at the expense of the more commercially valuable
conifer species. In Miles et al. (1984), the dominant Douglas fir is also a predominant
colonizer of eroded surfaces, reducing the impact of species composition change. The
composition changes are related to different parts of the landslide area, principally
between the upper scar (bedrock) area and the lower depositional portion. The
reductions are age-dependent: both studies suggest there is a recovery in height
growth, basal area and biomass increase over time (after 60 years in the study of Smith
et al.). Miles et al. (1984) suggest that a recovery of height growth rate on landslide scars
is possible within the period of one timber rotation. However the results of the same
authors, indicating decreased stocking potential, suggest that mass movement impacts
are very long-lasting in the absence of management intervention.

It should also be noted that much sediment resulting from mass movement entered
streams which in British Columbia are important habitat and spawning ground for
commercial and recreational fisheries. Concern about this impact was a primary reason
for the above studies being carried out (Chatwin and Smith, 1992; Hartman et al., 1996).
Increased fine sediment levels and physical catchment changes caused by mass
movement reduced the quality of salmonid habitat and caused a significant decline in
coho salmon egg survival rates, but it was apparently not possible to separate the effects
of logging from those of mass movement in causing increased fine sediment levels.

A further type of productivity impact which is unique to timber production areas is
nonlethal damage to trees by mass movement events which affect timber quality or
growth rates. Such damage may be distortion or lean in trees affected by slow mass
movement events such as earthflows (Vest, 1988), or abrasion caused by rapid regolith
movements.

Swanson etal. (1989) conclude that mass movement productivity impacts in
production forest are not large because of the small areas generally affected. However,
they note that when mass movement rates are increased by management activities such
as logging, roading or yarding, or where erosion acts in combination with other factors
on already severely disturbed sites, productivity may be reduced on the scale of
decades to centuries. On the other hand, Miller et al. (1989), in the same volume,
concluded that net long-term loss in site productivity from erosion had not been
demonstrated with certainty, and also mentioned the possibility of depositional
material enhancing growth locally to offset upslope losses.

A difficulty with these studies is the long production and growth cycles of forests
compared with herbaceous crops, making prediction of long-term trends difficult. In
New Zealand, the exceptionally fast growth of Pinus radiata stands may enable trends
to be detected earlier. Although no studies comparable with those discussed above have
been undertaken, modelling of tree growth in relation to environmental factors had
indicated some unexplained variability in stands on shallow steepland soils, which may
be attributable to the previous effects of mass movement erosion in reducing soil
rooting volumes (Hunter and Gibson, 1984). Surveys by Phillips et al. (1990), Marden et
al. (1991) and Kelliher et al. (1992) indicated that in young pine plantations (less than
about 8 years old), mass movement damage after a severe storm in 1988 was just as
severe as in adjacent grassland. Under growing trees which had established a
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continuous root network (8-24 years), mass movement affected less than 1% of
plantation area. Under mature trees close to harvest (25-30 years), damage was
typically less than 0.5%. Two surveys by Hicks (1990; 1991) indicated that the levels of
mass movement under both growing and mature P. radiata plantations were
comparable with undisturbed natural forest cover and lower than under regenerating
scrub.

Mass movement impacts on forests that are not used for timber harvesting are
scarcely documented. Due to the lower rate of mass movement under forest, such
impacts could be expected to be small, especially in industrialized temperate countries,
where little productive use of forests other than timber harvesting occurs. However, in
third-world countries numerous other productive uses take place (e.g., harvesting of
nontimber products, fodder and fuel gathering, and charcoal production). Any such
activity is disrupted to some extent by mass movement, whether the mass movement is
‘natural” or enhanced by human activity. Such disruption is likely to be more severe in
exceptional events which are generally less affected by the type of vegetation cover. If
natural forest or induced grassland has been recently replaced by planted trees and a
new tree root network not yet established (O’'Loughlin and Ziemer, 1984), impacts can
also be severe, as occurred in Thailand in late 1988 when widespread severe
landsliding, as well as downstream flooding and sediment damage, occurred on young
rubber tree plantations on steep slopes (Hamilton, 1992).

Mass movement productivity impacts on tropical agroforestry systems have not yet
been documented to our knowledge. Lal (1990) notes that studies of the impact of
erosion on agroforestry systems are very limited for any kind of erosion.

VIl Minimizing the impacts of mass movement on land productivity

A fundamental difference between surface and mass movement erosion from a land
productivity perspective concerns the strategies available to minimize the impacts.
Surface erosion rates are greatly increased (relative to natural rates) by inappropriate
agricultural managements such as excessive cultivation, overgrazing of ground cover,
or repeated burning of vegetation. It follows that the impacts can be very largely
mitigated by sensitive land husbandry techniques, as described for a number of years
by many authors e.g., FAO, 1977; Hudson, 1982; Lal, 1986; Carson, 1989). In contrast, the
rate of mass movement is not responsive to changes within an existing agricultural
management regime (e.g., more careful cultivation. It does either increase or decrease
with change from one type of agricultural regime to another — e.g., shifting cultivation
to cash cropping (increase) and livestock grazing to a mix of livestock grazing and agro-
forestry (decrease). Similarly it can either increase or decrease if land use is entirely
changed from agriculture to something else — e.g., plantation forestry (decrease) or
urban (increase). Therefore, minimization of mass movements impacts on land produc-
tivity has to be achieved by different strategies from the land husbandry techniques
applied to control surface erosion. Examples include mechanical or biological
techniques for restoring productive capacity of affected terrain, or zoning techniques
aimed at avoidance of areas particularly prone to mass movement erosion.

A voluminous literature on these types of strategies already exists. To review it is
beyond the scope of this article whose principal theme is the nature and magnitude of
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impacts — a topic which is not so well documented. Readers seeking further information
on strategies for counteracting mass movement impacts are referred in particular to
Schiechtl (1980); Hathaway and Van Kraayenoord (1987) and Hicks (1995) as compre-
hensive sources of information.

VIIl  Conclusions

1 Where impacts have been demonstrated

Impacts of mass movement erosion on land productivity have been comprehensively
documented in a few environments, notably New Zealand steeplands, and the Pacific
Northwest coast of North America, and more anecdotally discussed in a wider range of
tropical environments (Table 2).

2 Likelihood of impacts elsewhere

There are a number of regions worldwide, particularly in tropical steeplands, which
have large agricultural populations and where mass movement is likely to impact on
production, but which are poorly reported in the English-language international
literature. Richter and Babbar’s (1991) analysis of soil variability in the tropics clearly
shows there are far larger areas of soils affected by and susceptible to mass movement
erosion than has been indicated by soil maps and classifications current until recently.
Particular gaps appear in the following areas: much of China, northern Burma and
Indochina, Madagascar, the east African highlands (other than Tanzania), the
Mediterranean mountain fringes, the Caucasus, the Caribbean, the Andes, the Brazilian
uplands and New Guinea.

Land productivity impacts of mass movement will increase over the next few
decades, as a simple consequence of increasing populations expanding on to steeper
and more marginal land for food, fibre and fuel production. Such expansion will
inevitably mean more severe impacts, even if considerable progress is made with the
various strategies for minimizing impacts. Another reason is the likely prospect of
future climate change resulting in more storminess in many regions of the world (Lal,
1990).

3 Significance of the impacts

Perceptions of impacts vary widely among different groups of farmers and land
managers around the world, and are probably closely linked with the degree to which
mass movement’s impact on land productivity is masked by other factors. Some writers
(e.g., Gurung, 1988) assert that farmers, with few options for resettlement, accept mass
movement as part of their natural environmental variability, and simply adapt to it as
best they can. However, Omara-Ojungu (1978) finds that farmers in eastern Uganda
regard landslides one of their most pressing problems, second only to land shortage
and fragmentation, and well above ‘soil erosion’ (presumably surface erosion) in
importance. Cost-benefit analyses in the Pacific Northwest indicate that on a long-term
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basis, productivity loss in forested temperate watersheds may be of little economic sig-
nificance (Beuter and Johnson, 1989). On the other hand, Poulin (1985) discusses how
the loss of forest productivity and fish habitat to mass movement is perceived as
important enough to warrant initiation of a very comprehensive programme to study
further and then to ameliorate the impacts. On grazed steeplands in New Zealand,
mass movement erosion mainly affects the production of individual farms, but also
imposes significant ‘flow-on” costs (lost processing opportunities, damage repair) on
local communities (Clough and Hicks, 1993). The impacts have become more noticeable
to farmers and local communities in recent years, now that losses are no longer
compensated by government intervention, which formerly transferred costs to the
national economy:.

In view of the uneven and incomplete literature on mass movement impacts on land
productivity, it is not surprising that the number of quantitative estimates of its signif-
icance through sediment budgeting is tiny. Results are contradictory. In terms of
sediment load, surface erosion in some steepland regions is undoubtedly predominant
(Rijsdijk and Bruijnzeel, 1990; 1991, in east Java). In other regions sediment budgets
show that mass movement processes are more significant. This is clearly the case for
New Zealand steeplands (Trustrum et al., 1999) and parts of the Caribbean (Simon and
Guzman-Rios, 1990) and likely to be so in parts of the Himalaya.

One reason for the discrepancies in perception of impacts is that it takes time for pro-
ductivity loss to accumulate from successive mass movement events (Thomas and
Trustrum, 1984). Another is that the impacts are often masked: for instance, by higher
inputs such as increased fertilizer or more productive plant cultivars (Trustrum et al.,
1990; Lambert et al., 1993); or by structural adjustments such as farm amalgamation or
income diversification (Clough and Hicks, 1993).

4 Insufficient study and documentation

Published information about mass movement’s impact on land productivity remains
inadequate worldwide. Erosion-production research has historically concentrated on
cropped lowlands, where mass movement is rare or absent; while more recent research
has concentrated on surface erosion processes in steeplands. Enough literature exists to
indicate that, in many parts of the world, production losses in steeplands do occur due
to mass movement. However, few of the studies to date have quantified them, as
opposed to noting their existence. There is a pressing need for researchers to take
account of mass movement, if their studies are to indicate the full extent of erosion-
induced productivity loss.

The nature of mass movement requires that investigations of productivity loss be
conducted quite differently from those for surface erosion. Runoff-plot-scale studies are
clearly inappropriate. Watershed-scale investigations are sufficiently large to integrate
spatially the impact of widespread mass movements, but can be subject to difficulty in
distinguishing mass movement impacts from those of other erosion processes. For
instance, the techniques described for New Zealand pastoral steeplands, while
appropriate for ascertaining impacts of mass movement, have largely neglected surface
erosion impacts. For a comprehensive approach to assessing cumulative watershed
effects and environmental risk it is necessary to employ a combination of plot observa-
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tions, watershed-scale surveys, sediment budgeting and catchment modelling
techniques (Reid, 1993; Luckman et al.,1995).

Finally, research is needed in a wider range of productive ecosystems than cropland
or grazing land. In particular, much closer attention could be paid to the impacts of
mass movement erosion on commercial forestry, traditional uses of forests by
subsistence communities, and agroforestry systems.
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